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Problem Setting

Problem

Sample from a target distribution π over Rd , whose density w.r.t. Lebesgue is
known up to a constant Z :

π(x) =
π̃(x)

Z

where Z is the (untractable) normalization constant.

Motivation:

Let D = (wi , yi )i=1,··· ,N observed data.

Assume an underlying model parametrized by θ
(e.g.p(y |w , θ) gaussian)

⇒ Likelihood:p(D|θ) =
∏N

i=1 p(yi |wi , θ).

Assume also θ ∼ p(prior distribution).

Bayes’s rule: π(θ) := p(θ|D) = p(D|θ)p(θ)
Z , Z =

∫
Rd p(D|θ)p(θ)dθ.
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Sampling as optimization over distributions

Assume that π ∈ P2(Rd) = {µ ∈ P(Rd),
∫
∥x∥2dµ(x) < ∞}.

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

D(µ|π) := F(µ),

where D is a dissimilarity functional.

Starting from an initial distribution µ0 ∈ P2(Rd), one can then consider the
Wasserstein gradient flow of F over P2(Rd) to transport µ0 to π.
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Choice of the loss function

Many possibilities for the choice of D among Wasserstein distances, f-divergences,
Integral Probability Metrics...

D is the Kullback-Leibler divergence:

KL(µ|π) =

{∫
Rd log(

µ
π )dµ if µ ≪ π,

+∞ otherwise.

D is the MMD (Maximum Mean Discrepancy):

MMD2(µ, π) =

∫∫
Rd

k(x , y)dµ(x)dµ(y)

+

∫∫
Rd

k(x , y)dπ(x)dπ(y)− 2

∫∫
Rd

k(x , y)dµ(x)dπ(y),

where k : Rd × Rd → R is a p.s.d. kernel.
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Kernel Stein Discrepancy (Liu et al.2016)[5]

For µ, π ∈ P2(Rd), the KSD of µ relative to π is

KSD(µ|π) =

√∫∫
kπ(x , y)dµ(x)dµ(y),

where kπ : Rd × Rd → R is the Stein kernel, defined through

the score function sπ(x) = ∇logπ(x),

a p.s.d. kernel k : Rd × Rd → R, k ∈ C 2(Rd).
(e.g.k(x , y) = exp(−∥x − y∥2/h))

For x , y ∈ Rd ,

kπ(x , y) = s(x)T s(y)k(x , y) + s(x)T∇2k(x , y)

+∇1k(x , y)
T s(y) +∇ ·1 ∇2k(x , y).

Equivalently,

KSD2(µ|π) = Ex,y∼µ

[
(sπ(x)− sµ(x))

Tk(x , y)(sπ(y)− sµ(y))
]
.
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Stein identity and link with MMD

Under mild assumptions on k and π, the Stein kernel kπ is p.s.d. and satisfies a
Stein identity ∫

Rd

kπ(x , ·)dπ(x) = 0.

Consequently, KSD is a MMD with kernel kπ, since:

MMD2(µ|π) =
∫

kπ(x , y)dµ(x)dµ(y) +

∫
kπ(x , y)dπ(x)dπ(y)

− 2

∫
kπ(x , y)dµ(x)dπ(y)

=

∫
kπ(x , y)dµ(x)dµ(y)

= KSD2(µ|π).
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KSD benefits

KSD can be computed when

one has access to the score of π,

µ is a discrete measure, e.g. µ = 1
N

∑N
i=1 δx i , then

KSD2(µ|π) = 1

N2

N∑
i,j=1

kπ(x
i , x j).

KSD is known to metrize weak convergence [2] when:

π is strongly log-concave at infinity,

k has a slow decay rate.
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KSD in the literature

The KSD has been used for

nonparametric statistical tests for goodness-of-fit
[Xu and Matsuda, 2020, Kanagawa et al.,2020]

sampling tasks

(greedy algorithms) to select a suitable set of static points to approximate π,
adding a new one at each iteration,
[Chen et al.,2018, Chen et al.,2019]
to compress [Riabiz et al.,2020] or reweight [Hodgkinson et al., 2020] Markov
Chain Monte Carlo (MCMC) outputs,
to learn a static transport map from µ0 to π [Fisher et al., 2020],
to learn Energy-Based models π ∝ exp(−V ) from samples of π (use reverse
KSD) [Domingo Enrich et al.,2021].
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Time/Space discretization of the KSD gradient flow

Let F(µ) = KSD2(µ|π).
Its Wasserstein gradient flow on P2(Rd) finds a continuous path of
distributions that decreases F .

Different algorithms to approximate π depend on the time and space
discretization of this flow.

Forward discretization: Wasserstein gradient descent
Discrete measures: For discrete measures µ̂ = 1

N

∑N
i=1 δx i , we have an explicit

loss function

L([x i ]Ni=1) := F(µ̂) =
1

N2

N∑
i,j=1

kπ(x
i , x j).

Then, Wasserstein gradient descent of F for discrete measures

⇕

(Euclidean) gradient descent of L on the particles.
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KSD Descent − algorithms (Korba et al.2021) [4]

One direct way to implement KSD Descent (Gradient descent):
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KSD Descent as interacting particle system

KSD Descent is a sampling algorithm based on the following interacting
particle systems (after time scaling){

Ẋi = − 1
N

∑N
j=1 ∇kπ(Xi ,Xj)

{Xi (0)}Ni=1 ∼ µ0

The empirical measure µN := 1
N

∑N
i=1 δ(x − Xi (t)), then

Ẋi = −
∫

∇kπ(Xi , x)µN(dx) = −∇
(∫

kπ(Xi , x)µN(dx)
)
.

Generally, consider the following ODE system of {Xi}Ni=1

Ẋi = −∇V (Xi , µN), i = 1, · · · ,N.
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Our interests and motivation

Ẋi = −∇V (Xi , µN) ⇝ ∂tµN = ∇ · (∇V (x , µN)µN).

As N → ∞, µN can be shown to converge in some sense to the
Fokker-Planck equation [6]

∂tµ = ∇ · (∇V (x , µ)µ).

Now suppose that µN converges to µ, the fluctuation in the N → ∞ limit

η := lim
N→∞

√
N(µN − µ).

Question: How will the fluctuation evolve during the dynamics?

If the particle are i.i.d. sampled, the fluctuation follows the Central Limit
Theorem (CLT) and has variance 1/N.
No longer simple since the dynamics introduce interactions among the
particles.
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Our interests and motivation

The interacting particle system:

Ẋi = −∇V (Xi , µN) ⇝ ∂tµN = ∇ · (∇V (x , µN)µN). (1)

The mean field equation

Ẋi = −∇V (Xi , µ) ⇝ ∂tµ = ∇ · (∇V (x , µ)µ). (2)

If there are N particles drawn X̄i (0) i.i.d. from ρ0 and they evolve according
to the ODE (2), then they will be independent from each other for any t > 0.

Then these particles can be viewed as the Monte Carlo samplings from ρ for
every t. The fluctuation in this case

η̄ := lim
N→∞

√
N(µ̄N − µ).

We will compare ∥ηt∥ with ∥η̄t∥, here ∥ · ∥ is some norm.
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Flow mapping methods in Chen et. al.2020[1]

The mean field Wasserstein gradient flow

∂tµt = ∇ · (∇V (x , µt)µt), µt=0 = µ0. (3)

Interpreted as the pushforward of the characteristic flow map∫
χ(x)µt(dx) =

∫
χ(Θt(x))µ0(dx),

where χ is a continuous test function and Θt solves

Θ̇t(x) = −∇V (Θt(x), µt), Θ0(x) = x .

Similarly, for Wasserstein gradient flow of the empirical measure

Θ̇
(N)
t (x) = −∇V (Θ

(N)
t (x), µ

(N)
t ), Θ

(N)
0 (x) = x .
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Flow mapping methods in [1]

η
(N)
t :=

√
N(µ

(N)
t − µt)

Take a test function χ(x),∫
χ(x)η

(N)
t (dx) =

√
N

∫
χ(x)

(
µ
(N)
t (dx)− µt(dx)

)
=

√
N

∫
χ(Θ

(N)
t (x))µ

(N)
0 (dx)− χ(Θt(x))µ0(dx)

=
√
N

∫
χ(Θ

(N)
t (x))µ

(N)
0 (dx)− χ(Θt(x))µ

(N)
0 (dx)

+ χ(Θt(x))µ
(N)
0 (dx)− χ(Θt(x))µ0(dx)

=

∫
χ(Θt(x))η

(N)
0 (dx) +

√
N
[
χ(Θ

(N)
t (x))− χ(Θt(x))

]
µ
(N)
0 .

The first term: Θ
(N)
t remains equal to Θt .

The second term captures the deviation to the flow Θt induced by the

perturbation of µ0, i.e. how much Θ
(N)
t differs from Θt .
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Flow mapping methods in [1]

Proposition 3.1[1]

Under mild conditions, ∀t > 0, as N → ∞ we have η
(N)
t ⇀ ηt weakly in law with

respect to P0, where ηt is such that given a test function χ,∫
χ(x)ηt(dx) =

∫
χ(Θt(x))η0(dx) +

∫
∇χ(Θt(x)) · Tt(x)µ0(dx).

Here η0 is the Gaussian measure with mean zero and covariance

E0[η0(dx)η0(dx
′)] = µ0(dx)δx(dx

′)− µ0(dx)µ0(dx
′),

and Tt = limN→∞
√
N(Θ

(N)
t −Θt) is the flow solution to

Ṫt(x) = −∇∇V (Θt(x), µt)Tt(x)−
∫

∇K (Φt(x), x
′)ηt(dx

′)

Note: This proposition holds for V (x , µ) = F (x) +
∫
K (x , x ′)µ(dx ′).
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The fluctuation in KSD Descent

KSD Descent:

Ẋi = −
∫

∇kπ(Xi , x
′)µN(dx

′) = −∇
(∫

kπ(Xi , x
′)µN(dx

′)
)

where

kπ(x , x
′) = sπ(x) · sπ(x ′)k(x , x ′) + sπ(x) · ∇′k(x , x ′)

+∇k(x , x ′) · sπ(x ′) + tr(∇∇′k(x , x ′))

and sπ(x) = ∇logπ(x).

KSD Descent can be seen as a specific example when

V (x , µ) =

∫
kπ(x , x

′)µ(dx ′).
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The fluctuation in KSD Descent

Recall that∫
χ(x)ηt(dx) =

∫
χ(Θt(x))η0(dx) +

∫
∇χ(Θt(x)) · Tt(x)µ0(dx)

where Tt is the flow solution to

Ṫt(x) = −∇∇V (Θt(x), µt)Tt(x)−
∫

∇kπ(Θt(x), x
′)ηt(dx

′).

By the Duhamel’s principle

Tt(x) = −
∫ t

0

Jt,s(x)

∫
∇kπ(Θs(x), x

′)ηs(dx
′)ds,

where Jt,s is the solution to

d

dt
Jt,s(x) = −∇∇V (Θt(x), µt)Jt,s(x), Js,s(x) = Id .
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The fluctuation in KSD Descent

Theorem 3.7[5]

Assume k(x , x ′) is a positive definite kernel with positive eigenvalues {λj} and
eigenfunctions {ej(x)}, then kπ(x , x

′) is also a positive definite kernel, and can be
rewritten into

kπ(x , x
′) =

∑
j

λj [Aπej(x)]
T [Aπej(x

′)],

where Aπej(x) = sπ(x)ej(x) +∇ej(x) is the Stein’s operator acted on ej . In
addition,

KSD2(µ|π) = Ex,x′∼µkπ(x , x
′) =

∑
j

λj∥Ex∼µ[Aπej(x)]∥22.
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The fluctuation in KSD Descent

Calculations:

Tt(x) = −
∫ t

0

Jt,s(x)

∫
∇kπ(Θs(x), x

′)ηs(dx
′)ds

= −
∑
i

λi

∫ t

0

Jt,s(x)∇Aπei (Θs(x))

∫
Aπei (x

′)ηs(dx
′)ds.

Introduce g
(j)
t :=

∫
Aπej(x

′)ηt(dx
′).

By the property of ηt :

g
(j)
t =

∫
Aπej(Θt(x))η0(dx) +

∫
∇Aπej(Θt(x)) · Tt(x)µ0(dx)

= ḡ
(j)
t −

∑
i

λi

∫ t

0

Γi,jt,s g
(i)
s ds

where

Γi,jt,s =

∫
∇Aπej(Θt(x))Jt,s(x)∇Aπei (Θs(x))µ0(dx).
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The fluctuation in KSD Descent

For every j it holds that

g
(j)
t = ḡ

(j)
t −

∑
i

λi

∫ t

0

Γi,jt,s g
(i)
s ds.

Taking the dot product by λjg
(j)
t on both sides and sum over j

∑
j

λj |g (j)
t |2 =

∑
j

λjg
(j)
t · ḡ (j)

t −
∑
i,j

λiλj

∫ t

0

⟨g (j)
t , Γi,jt,s g

(i)
s ⟩.

Let ϕ(t, x) :=
∑

j λj∇Aπej(Θt(x))g
(j)
t , then

∑
j

λj |g (j)
t |2 =

∑
j

λjg
(j)
t · ḡ (j)

t −
∫ t

0

∫
⟨ϕ(t, x), Jt,s(x)ϕ(s, x)⟩µ0(dx)ds.
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The fluctuation in KSD Descent

∑
j

λj |g (j)
t |2 =

∑
j

λjg
(j)
t · ḡ (j)

t −
∫ t

0

∫
⟨ϕ(t, x), Jt,s(x)ϕ(s, x)⟩µ0(dx)ds.

Jt,s satifies

d

dt
Jt,s(x) = −∇∇V (Θt(x), µt)Jt,s(x), Js,s(x) = Id .

If Jt,s is a nonnegative Volterra kernel, then for every T > 0∫ T

0

∑
j

λj |g (j)
t |2dt ≤

∫ T

0

∑
j

λjg
(j)
t · ḡ (j)

t dt,

which implies that∫ T

0

∑
j

λj |g (j)
t |2dt ≤

∫ T

0

∑
j

λj |ḡ (j)
t |2dt.
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Some comments on the fluctuation in KSD Descent

Under the thermal equilibrium, namely µ0 = µt = µ∞, Θt(x) = Θ∞(x) ≡ x
and ∇∇V (x , µ∞) is p.s.d., then

Jt,s = e−(t−s)∇∇V (x,µ∞)

is a nonnegative Volterra kernel, which means∫ T

0

∫ t

0

⟨ϕ(t), J(t − s)ϕ(s)⟩dsdt ≥ 0.

Then ∫ T

0

∑
j

λj |g (j)
t |2dt ≤

∫ T

0

∑
j

λj |ḡ (j)
t |2dt.

Recall:

KSD2(µ|π) =
∑
j

λj

∣∣∣ ∫ Aπej(x)µ(x)
∣∣∣2.

g
(j)
t =

∫
Aπej(x)ηt(dx), ηt = lim

N→∞

√
N(µN − µ).

Here the norm is ∥ηt∥2kπ :=
∫∫

kπ(x , x
′)ηt(dx)ηt(dx

′).
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General interacting particle systems

Generally, the first order SDE systems for N interacting particles in the mean
field scaling

dXi = −∇V (Xi )dt −
1

N

∑
j

∇W (Xi − Xj)dt +
√
2β−1dBi , i = 1, · · · ,N.

The corresponding Fokker-Planck equation

∂tρ = ∇ · ((∇V +∇W ∗ ρ)ρ) + β−1∆ρ.

Note: For the system with noise, the approach in [1] using the flow mapping
is not accessible.

The SPDE that the fluctuation satisfies [7]

∂tη = ∇ · (∇U(x , t)η) + β−1∆η +∇ · (∇W ∗ ηµt)−
√
2β−1∇ · (√µtξ)

where U(x , t) = V (x) +W ∗ µ and ξ is a space-time noise.
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Main Results

The basic equations in the thermal equilibrium

Proposition 1

Both η̂t and ˆ̄ηt are Gaussian stochastic processes. They satisfy the relation

η̂t(ω) = ˆ̄ηt(ω)∓
1

(2π)d

∫ t

0

∫
X̂

k(ω, ω′, t − s)Φ̂(ω′)η̂s(ω
′)dω′ds,

where “−” sign corresponds to W = Φ and “+” corresponds to W = −Φ
respectively, and

k(ω, ω′, s) = β

∫
X

(
e−

1
2 sAe−iω·y

)
A(e−

1
2 sAe iω

′·y )µ∗(dy).

Here A = −L = ∇U(x) · ∇ − β−1∆ = −β−1eβU∇ · (e−βU∇). For each s, k is
Hermitian with

k(ω, ω′, s) = k(ω′, ω, s)

and is positive semi-definite in s.

Jiaheng Chen (SJTU) Sampling via Flows April 7, 2022 26 / 34



Main Results

Reduced system using eigen-expansion

Assume L has a spectral gap, then A = −L is a nonnegative self-adjoint
operator in L2(Rd ;µ∗) with discrete spectrum. The eigenvalue problem for
the generator is

−Lϕn = λnϕn, n = 0, 1, ...

Proposition 2

For all i , j

Gij =

∫∫
X×X

Φ(y − y ′)ϕi (y)ϕj(y
′)µ∗(dy)µ∗(dy

′) ∈ R.

The operator G : ℓ2 → ℓ2 is positive semi-definite. If moreover Φ̂ has full support
in X̂ , G is positive definite.
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Main Results

Reduced system using eigen-expansion
Introduce X̃i (t) =

∫
X ϕi (y)ηt(dy), Ỹi (t) =

∫
X ϕi (y)η̄t(dy).

Define X := G 1/2X̃ , Y := G 1/2Ỹ .

Proposition 3

(i) Almost surely, X (t) = G 1/2X̃ (t) ∈ ℓ2 and Y (t) = G 1/2Ỹ (t) ∈ ℓ2.

(ii) It holds that

∥ηt∥2Φ = ∥η̂t∥2L2(ν) = ⟨X ,X ⟩ℓ2 = ⟨X̃ ,GX̃ ⟩ℓ2 .

and similar relations hold for η̄t and Y (t).

(iii) Introducing a family of operators Λ(t) : ℓ2 → ℓ2 for t > 0, defined by
(Λ(t)X )i = λie

−λi tXi , then the following equation holds

X (t) = Y (t)∓ β

∫ t

0

G 1/2Λ(t − s)G 1/2X (s)ds, (4)

where “−” sign corresponds to W = Φ and “+” corresponds to W = −Φ
respectively.
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Main Results

The space homogenous systems on torus

Theorem 1
(i) If W = Φ, E∥ηt∥2Φ is decreasing in time, and for any t > 0

E∥ηt∥2Φ < E∥η̄t∥2Φ.

Moreover, for j ≥ 1, as t → ∞, one has

lim
t→∞

E∥ηt∥2Φ =
∑
j≥1

E|Yj |2

1 + βE|Yj |2
,

and consequently limβ→+∞ limt→∞ ∥ηt∥2Φ = 0.

(ii) If W = −Φ, E∥ηt∥2Φ is increasing in time, and for any t > 0

E∥ηt∥2Φ > E∥η̄t∥2Φ,

Moreover, there is a critical value βc such that when β > βc ,
limt→∞ E∥ηt∥2Φ = +∞.
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Main Results

General cases

Lemma 1
With the notations introduced in Proposition 3, it holds almost surely that

∥η̂t∥2L2(ν) =

{
∥ˆ̄ηt∥2L2(ν) +R+(t), if W = Φ;

∥ˆ̄ηt∥2L2(ν) +R−(t), if W = −Φ,

where

R±(t) = ∓2β
〈
X (t),

∫ t

0

G 1/2Λ(t − s)G 1/2X (s)ds
〉
ℓ2

− β2
∥∥∥∫ t

0

G 1/2Λ(t − s)G 1/2X (s)ds
∥∥∥2
ℓ2
.
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Main Results

General cases

Theorem 2
(i) (W = Φ, positive definite case) For any T > 0, it holds almost surely that∫ T

0

∥ηt∥2Φdt ≤
∫ T

0

∥η̄t∥2Φdt.

(ii) (W = −Φ, negative definite case) Assume the interaction is weak such that

∥G∥ ≤ 2β−1,

where ∥ · ∥ is the operator norm. Then for any T > 0 it holds almost surely
that ∫ T

0

∥ηt∥2Φdt ≥
∫ T

0

∥η̄t∥2Φdt.

Relates to Volterra equation with convolution kernels of positive type[3].
The condition ∥G∥ ≤ 2β−1 is equivalent to that G 1/2Λ(t − s)G 1/2 is of
anti-coercive type with coercivity constant q = 2β−1.
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Summary

KSD Descent is a sampling algorithm based on Wasserstein gradient flow
and interacting particle system.

In the equilibrium, KSD Descent introduces smaller fluctuation compared
with standard Monte Carlo sampling and has better sampling properties.

Generally, the systems with positive definite interaction potentials tend to
exhibit smaller fluctuation compared to the fluctuation in standard Monte
Carlo sampling while systems with negative definite potentials tend to exhibit
larger fluctuation.
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Thanks for your listening!
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