Covariance Operator Estimation in the Small
Lengthscale Regime

Jiaheng Chen
UChicago

Feb 27 2024, Trieste



Joint work with

Omar Al-Ghattas Daniel Sanz-Alonso Nathan Waniorek



Outline

Covariance Matrix Estimation

Covariance Operator Estimation

Application in Ensemble Kalman Filters

Summary



Covariance Matrix Estimation

Model: Let X1, Xz, -+, Xy € RP be i.i.d. N(0,¥)



Covariance Matrix Estimation
Model: Let X, X, -+, Xy € RP be i.i.d. N(0,X)

Goal: Estimate ¥ under the spectral norm



Covariance Matrix Estimation
Model: Let X1, Xp, -+, Xy € RP be i.i.d. N(0,X)
Goal: Estimate ¥ under the spectral norm

_ =~ N
Sample covariance: ¥ = (Gjj)pxp = 5 Dojq XiX;'



Covariance Matrix Estimation
Model: Let Xy, Xo, - , Xy € RP be i.i.d. N(0,X)
Goal: Estimate ¥ under the spectral norm
Sample covariance: Y = (Tij)pxp = % Zf\’:l X,-X,-T
Nonaymptotic Rate: [Koltchinskii and Lounici, 2017]
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Covariance Matrix Estimation
Model: Let X1, Xz, - , Xy € RP be i.i.d. (0, %)
Goal: Estimate ¥ under the spectral norm
Sample covariance: ¥ = (Gii)oxp = % Zf\’:l bod

Nonaymptotic Rate: [Koltchinskii and Lounici, 2017]
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rx) Y r()) , r(X): H(E) (effective rank)
Example: ¥ = ,x,, Tr(X)=p, |X]=1
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Sample complexity: N = O(p)



Covariance Matrix Estimation

Question:

» In high-dimensional setting, p > N.

» Can we do better under some structured assumption on ¥ ?



Sparse Covariance [Bickel and Levina, 2008]

Parameter space: row-wise {g-"“norm” sparsity
U(g,s,M)=<x: 12?§)(paii <M, max Z|0U|‘7 <sp;, 0<g«l1

Thresholded estimator: ¥ = (@ij)pxp

6'\,'1' = 5,1 1{|5'J| > )\}, with A= Cy/ ——

Covergence Rate:
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Sample complexity: N = O(log p)



Brief summary

> General X: N ~p
> Sparse X: N ~ log(p) (thresholded estimator)

» Other structured covariance matrices:

Bandable, Toeplitz, Spiked sparse... [Cai et al., 2016]
» Minimax optimality: [Cai et al., 2010, Cai and Zhou, 2012]

» One of the central subjects in high-dimensional statistics
[Wainwright, 2019]
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Covariance Operator Estimation

Model: Let uy, up,...,uy bei.i.d. centered and continuous Gaussian
random functions on D = [0, 1]¢

Covariance function: k(x,x') = E[u(x)u(x')], x,x' €D
Covariance operator: C : L?(D) — L?(D)
(©0)() = [ KXY a1 € 12(D)
D

Goal: Estimate C under the operator norm



Covaraince Operator Estimation

Sample covariance function:
N 1N
k(x,x') = N ; un(x)un(x")

Sample covariance operator: C : [2(D) — [2(D)

Cv)() = / k(X )o(x') dx, 1 € L2(D)
D
Nonaymptotic Rate: [Koltchinskii and Lounici, 2017]

Eni—znxnzn< (NZ)V(NZ)> ) =

Question: Can we design better estimators under some structured
assumption, e.g. sparsity?



Thresholded estimator

Sparse class: row-wise £4-“norm” sparsity

1
w%/wawfs&,wwm
D

xeD
(similar to matrix sparsity assumption: max; >7_, || < s)

Thresholded covariance function:
ZPN(X,X/) = Z(X’X/)l{\Z(x,x'nsz}(X’Xl)’ pn : thresholding level

Thresholded covariance operator:

(%wwrﬁamxmwwxweﬂm
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Main result 1
Assumption
(i) Normalization: sup,cp E[u(x)?] =1

(i) Sparsity: sup,ep ([, |k(x, x)[7dx') 7 < Ry, g€ (0,1)

Theorem (Al-Ghattas, C., Sanz-Alonso, Waniorek)

Assume N 2 (E[sup,p u(x)])?, set

Then,
~ 1
E|Cay —Cll S Ripn 7

Proof: Careful analysis of thresholded estimator, concentration of py, tail
bounds in covariance function estimation (product and multiplier
empirical process results [Mendelson, 2016]), etc.
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Question:
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(i) k(x,x") = k(]x — x’|) > 0, k(r) is differentiable, strictly decreasing
on [0, 00), and satisfies k(r) — 0 as r — co.

(i) k = ky depends on a correlation lengthscale parameter A > 0 such
that ky(ar) = kyq-1(r) for any a > 0, and ky(0) = k(0) is
independent of \.



Main result 2

Question:

How to compare thresholded estimator with sample covariance?

Assumption
(i) k(x,x") = k(]x — x’|) > 0, k(r) is differentiable, strictly decreasing
on [0, 00), and satisfies k(r) — 0 as r — co.

(i) k = ky depends on a correlation lengthscale parameter A > 0 such
that ky(ar) = kyq-1(r) for any a > 0, and ky(0) = k(0) is
independent of \.

Two popular examples:

Squared Exponential:  k¥%(x, x’) = exp (— |X2_AX2/|2)

Matérn: kM3 (x,x") = 2r1(;; (@M — X/|>V K, (@\x - x’|)

[Stein, 1999] [Williams and Rasmussen, 2006]...



Main result 2

Theorem (Small lengthscale regime)

Assume N > log(A~9), set
N

~ 1 /1
PN = \ﬁ (N ;igg Un(X))-

Then, for sufficiently small X,

BiC—c| _ A<,
& N

)\—d
N
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- nn,n____ S C d7 q - a7 b
e .9~y

where c(d, q) =< (5~ ku(r)2rd=2dr) / ([~ ka(r)r@=2dr).



Main result 2

Theorem (Small lengthscale regime)
Assume N > log(A~9), set

( Z sup up(x) )

1 xeD
Then, for sufficiently small X,
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Main result 2

Theorem (Small lengthscale regime)
Assume N 2 log(A~9), set

( Z sup up(x) )

1 xeD
Then, for sufficiently small X,

E[C—c| _ [Axd A

=S

IC] NN
(

E||Cs, —C| (log xd))lz"
—_=pn = S c d7q =2y 7 ,
E @9~y

where c(d, q) =< ([; ku(r)Trd=dr) / (f;~ ka(r)r@=1dr).

Proof: Rg < A? [ ki(r)ard=2dr, |[C|| < A? [ ku(r)r{—tdr, and
E[sup.ep u(x)] < /log(A~9).



A simple numerical experiment
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Figure 1: Plots of the average relative error and 95% confidence intervals
achieved by the sample (g, dashed blue) and thresholded (g5, solid red)
covariance estimators based on sample size (N, dotted green) for the squared
exponential kernel (left) and Matérn kernel (right) over 100 trials.

35

30

25

20

15

10

1072 107t 100
Lengthscale (A)



Application in EnKFs



Application in Ensemble Kalman Filters

Linear forward model:
y=Au+n, ucl?D), yeR% 5~ N(O,T)
Ensemble Kalman filters (EnKFs):
(o} NO,0), Yy = (Wi
Perturbed observation or stochastic EnKF [Evensen, 1994]:
voi= tn+ H(C)(y — Aup =), 1<n<N

Kalman gain . (C) := CA* (ACA* + )Y, {0V, "¢ A°(0,T).
Mean-field EnKF:

vy =un+ 2 (C)(y —Aup—ms), 1<n<N
Use thresholded covariance:

~

vy = up+ A (Cop) (y — Aun —mp), 1<n<N



Application in Ensemble Kalman Filters

Theorem (Approximation of Mean-Field EnKF)

Set
PN X —= < Zsupun(x>.

n—1 X€D

— —d
Ellve — vl | i) S € [c(d) (WNC' v AN>

e
E[vﬁ—vﬂun,nnlsc[c(d,q)<'°g(,3 )> ]

where ¢ = [LA| [T~ 1€l ly — Auy — o]

Then,

)




Summary



Takeaways

Covariance matrix estimation: N(0,X,,)
» General X: N~ p

» Sparse X: N ~ log(p)

thresholded estimator, minimax optimal

Covariance operator estimation: A/(0,C)

> \: lengthscale d: ambient dimension
» General C: N ~ A\~ ¢

» Sparse C: N ~ log(A~9)  thresholded estimator

Many applications: EnKFs, etc.



Future directions

» Other structured covariance operators & minimax optimal rates
» Nonstationary fields, heavy tailed distribution, robustness

» Operator learning, learning Green's functions, GPs, etc

» Fast solvers: Hierarchical matrices, low-rank approximation, etc

> Precision matrix/operator estimation, learning Gaussian graphical
models, etc



Thanks!



Experiment details

Squared Exponential:  k$E(x, x’) = exp (— |X2_AX2/|2)

Matérn: k;\v’lj(x, x') = 2r1(;; (@M — X/|>V K, (@\x - x’|)

» Uniformly discretize D = [0, 1] using a mesh of L = 1250 points
> CU=k(x,x), 1<ij<L

> CU= L5 un(x)un(), Co =Cilgsy, 1<ij<L

le=cl . _ le=Cayll

> p—
€= "er > Caw Il

» 30 lengthscales arranged uniformly in log-space

(range from 1073 to 10701)

> N =5log(1l/))



A simple numerical experiment
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Figure 2: Plots of the average relative error and 95% confidence intervals
achieved by the sample (g, dashed blue) and thresholded (g5, solid red)
covariance estimators based on sample size (N, dotted green) for the squared
exponential kernel (left) and Matérn kernel (right) over 100 trials.
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